Prov. Matematik 1a. Geometriska satser. [Gymnasiet]

Provkonstruktion

Årskurs: Gymnasiet

Ämne: Matematik 1a

Tema: Geometriska satser

Syfte

Syftet med provet är att bedöma elevernas förståelse och tillämpning av geometriska satser. Eleverna ska kunna tillämpa dessa satser i olika matematiska problem samt resonera kring geometriska samband och bevis.

Centralt innehåll Betygskriterium (E)
Matematiska begrepp som är relevanta för karaktärsämnen och yrkesliv, till exempel Pythagoras sats. Eleven kan använda och beskriva matematiska begrepp och samband mellan begrepp.

Källa: (Gy11, Kursplan Matematik 1a)

Prov

Faktafrågor

Antal poäng: 15

  1. Vilken av följande satser används för att beräkna längden av hypotenusan i en rätvinklig triangel?
    • A) Pythagoras sats
    • B) Sinussatsen
    • C) Cosinussatsen
  2. Vad är värdet av en vinkel i en triangel som är 60 grader om den andra vinkeln är 30 grader?
    • A) 90 grader
    • B) 60 grader
    • C) 30 grader
  3. Vilken formel används för att beräkna arean av en triangel?
    • A) A = bas * höjd
    • B) A = (bas * höjd) / 2
    • C) A = 2 * bas + höjd
  4. Om sidan av en kvadrat är 4 cm, vad är dess omkrets?
    • A) 12 cm
    • B) 16 cm
    • C) 20 cm
  5. En triangel har sidorna 3, 4 och 5. Är detta en rätvinklig triangel?
    • A) Ja
    • B) Nej
    • C) Beror på vinklarna
  6. Vad är summan av vinklarna i en triangel?
    • A) 180 grader
    • B) 360 grader
    • C) 90 grader
  7. Vilken av följande formler används för att beräkna volymen av en cylinder?
    • A) V = πr²h
    • B) V = 2πr²h
    • C) V = πd²h
  8. Vilken geometrisk figur har fyra lika långa sidor och 90 graders vinklar?
    • A) Rektangel
    • B) Kvadrat
    • C) Romboid
  9. Hur många sidor har en hexagon?
    • A) 5
    • B) 6
    • C) 7
  10. Vad kallas en vinkels bisektrik?
    • A) En linje som delar en vinkel i två lika stora delar
    • B) En linje som är vinkelrät mot en sida
    • C) En linje som är parallell med en sida

Ordkollen

Antal poäng: 10

Beskrivning: Nedan listas ord och begrepp som följs av tre alternativa förklaringar. Du ska ringa in det alternativ som är korrekt.

Ord/Begrepp 1 2 3
Pythagoras sats Beräkning av area Relation mellan sidor i en rätvinklig triangel Beräkning av omkrets
Triangel En figur med tre sidor En figur med fyra sidor En figur med sex sidor
Rätvinklig triangel Har alltid en 60 graders vinkel Har alltid en 90 graders vinkel Har alltid tre lika långa sidor
Kvadrat En figur med fyra sidor En figur med tre sidor En figur med två sidor
Parallellogram Har alltid olika vinklar Har två par parallella sidor Har alltid lika långa sidor
Cirkel Kan ha olika radier Har alltid fyra sidor Är alltid en triangel
Volym Mängden av yta Mängden av rum i en figur Mängden av längd
Area Mängden av rum i en figur Ytan av en figur Längden av en figur
Symmetri En egenskap hos figurer En typ av triangel En typ av linje
Radie Avståndet från centrum till kanten av en cirkel Avståndet mellan två punkter Avståndet från en sida till en annan

Resonerande frågor

Antal poäng: 20

Beskrivning: Besvara nedanstående frågor så bra du kan. Du kan skriva dina svar på baksidan.

  • 1. Förklara vad Pythagoras sats innebär och ge ett exempel på hur den används i ett praktiskt sammanhang.
  • 2. Resonera kring skillnaderna mellan olika trianglar och deras egenskaper, ge exempel på när dessa används.
  • 3. Diskutera hur geometriska satser bygger på varandra och hur de används för att bevisa andra matematiska påståenden.
  • 4. Reflektera över vikten av att förstå geometriska begrepp och satser i vardagen och i olika yrken.

Bedömning

Totalt antal poäng: 55

Betyg Antal poäng Procent
E 30 54%
D 35 64%
C 40 73%
B 45 82%
A 50 91%

Modern Tillbaka-knapp